Lifestyles of the Stars

Essential Vocabulary:

- Giant Molecular Cloud
 - Large molecular gas clouds
 - Up to 1 Million solar masses
- Cloud Core
 - Densest part of a molecular cloud
 - > Generally where star formation begins to take place
 - Usually the center of the cloud
- Protostar
 - > The first phase of a star's life
 - > A star still in the process of forming
- Zero Age Main Sequence
 - > The time at which a star joins the main sequence
 - Hydrogen begins burning through fusion
 - Star enters stellar evolution
- Main Sequence Star
 - Stars burning hydrogen into helium
 - Stars in the main sequence on a HR diagram
- Red Dwarf
 - > A small, cool star in the main sequence
 - Generally spectral type of K or M
 - From .075 solar masses units to .5 solar masses
- Brown Dwarf
 - > A star whose mass is insufficient for nuclear fission
 - > Their masses are so low, it is generally measured in Jupiter masses
- Red Giant
 - > A giant in a late phase of staller evolution
 - Low surface temperature, large radius
 - Generally fuse hydrogen into helium, other into carbon
- Planetary Nebula
 - Bright shell around a hot star
 - > Generally composed of gas ejected from the star as a red giant
- White Dwarf
 - A small, dense star supported by electron degeneracy
 - Extremely dim
 - Final evolutionary state for smaller stars
- Supernova
 - Stellar explosion
 - > Brightness increases by a factor of up to 1 Billion
 - Two types, Type 1 and Type 2
 - Type 1 Caused by rapid fusion of carbon and oxygen in a white dwarf
 - Type 2 Caused by the collapse of a star's core

- Neutron Star
 - > A star whose composition is primarily neutrons tightly packed together
 - > Extremely dense
 - Supported against gravity by neutron degeneracy
 - Remains of a star after a Type 2 supernova
 - Final state of stars with a mass greater than the Chandrasekhar limit, but insufficient to overcome neutron degeneracy
- Black Hole
 - > A region in space with infinite gravitational attraction
 - No matter or radiation can escape
 - Final evolutionary state for large stars
- Parts of the HR Diagram
 - Main Sequence
 - Continuous spectrum of stars
 - Filled with stars who are producing helium by fusing hydrogen in their cores
 - Runs from hot, bright stars to cool, dim stars
 - Stars move down and towards the right as they age
 - Red Giants
 - Group of stars branching above the main sequence
 - Runs perpendicular and above the main sequence from around 4,000K to 1,000K
 - White Dwarfs
 - Group of stars branching of the bottom of the HR Diagram
 - Runs from around 20,000K to 4,500K
 - Have low luminosities
 - Birth Line
 - Predicated path on an HR Diagram taken by protostars at the end of initial accretion
 - Not a defined line varies from star to star
- Evolutionary Track
 - > Path in an HR Diagram which shows stars as they evolve over their lives
 - Shows the changing properties of stars over time
- Vogt Russell Theorem
 - > The idea that the initial mass and composition of a star determine the course of its life
 - > Never proven
 - Require the star to exist without external influences
- Thermo Gravitational Equilibrium
 - > A point at which a star is in equilibrium with internal and external pressures
 - Stars often fluctuate in and out of equilibrium
- Nuclear Processes
 - Proton Proton Chain
 - A fusion reaction to convert hydrogen into helium
 - Often used by smaller stars, like the Sun
 - Requires high temperature to overcome Coulomb repulsion
 - > CNO Cycle
 - Alternate to the Proton Proton Chain

- Catalytic Cycle
- Used by larger stars

Advanced Vocabulary:

- T Tauri Star
 - Pre main sequence star
 - Small (less than three solar masses)
 - Intense emission lines
- Asymptotic Giant Branch (AGB)
 - > Portion on an HR Diagram above the Main Sequence, near the Red Giant Branch
 - Contains large, cool stars
 - Generally burn helium
- AGB Star
 - A star in the AGB
 - > Pulsates due to changes in the thermo gravitational equilibrium
 - > These pulsations can burn of the outer shell, resulting in a planetary nebula
- Pulsar
 - 'Pulsating star'
 - > A rotating neutron star with an extremely strong magnetic field
 - > Emits a powerful beam of electromagnetic radiation
 - > The period of this beam's visibility from Earth is often used to research pulsars
 - > Originally thought to be alien communication
- Magnetar
 - > A kind of neutron star with an extremely powerful magnetic field
 - > This magnetic field results in the emission of energetic radiation
 - > This field can heat up the surface of a magnetar to millions of degrees
- RR Lyrae Star
 - Also called RR Lyrae variables
 - > Often used as standard candles for distance measurement
 - In the instability strip on an HR Diagram
 - > Brightness varies periodically due to changes in the size of the star
 - > These variations come from changes in the thermo gravitational equilibrium
- Classical Cepheid Variable Stars
 - Variable stars similar to RR Lyrae stars
 - > Tend to be far brighter, and have longer periods
- Electron Degeneracy
 - Degeneracy pressure caused by the Pauli Exclusion Principle for Electrons
 - Pushes outward against gravitational collapse
 - Overcome in neutron stars and black holes
- Neutron Degeneracy
 - > Degeneracy pressure from the Quantum Degeneracy Principle for Quarks
 - Pushes outward against gravitational collapse
 - Overcome in black holes
- Parts of the HR Diagram

- Instability Strip
 - A rectangular region perpendicular to the main sequence that lies above
 - Contains pulsating stars like RR Lyrae, Cephid Variables and W Virginia Variables
 - Pulsations are due to changes in the thermo gravitational equilibrium of stars, and occasionally the path between Earth and the star
- ≻ AGB
 - A portion of the HR Diagram that is asymptotic to the horizontal branch, which lies to the right of the main sequence
 - Stars here have a burning helium core, surrounded by a hydrogen shell
- Nuclear Processes
 - ➢ R − Process
 - Creates heavier elements during the core collapse in a supernova
 - Creates most of the heavy elements (above iron)
 - ➢ S − Process
 - Creates heavier elements by neutron capture
 - Requires preexisting seed nuclei
 - Generally takes place in AGB stars